Phenolic Biotransformations during Conversion of Ferulic Acid to Vanillin by Lactic Acid Bacteria
نویسندگان
چکیده
Vanillin is widely used as food additive and as a masking agent in various pharmaceutical formulations. Ferulic acid is an important precursor of vanillin that is available in abundance in cell walls of cereals like wheat, corn, and rice. Phenolic biotransformations can occur during growth of lactic acid bacteria (LAB), and their production can be made feasible using specialized LAB strains that have been reported to produce ferulic acid esterases. The present study aimed at screening a panel of LAB isolates for their ability to release phenolics from agrowaste materials like rice bran and their biotransformation to industrially important compounds such as ferulic acid, 4-ethyl phenol, vanillic acid, vanillin, and vanillyl alcohol. Bacterial isolates were evaluated using ferulic acid esterase, ferulic acid decarboxylase, and vanillin dehydrogenase assays. This work highlights the importance of lactic acid bacteria in phenolic biotransformations for the development of food grade flavours and additives.
منابع مشابه
Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus
BACKGROUND Bacterial cellulose (BC) is a polymeric nanostructured fibrillar network produced by certain microorganisms, principally Gluconacetobacter xylinus. BC has a great potential of application in many fields. Lignocellulosic biomass has been investigated as a cost-effective feedstock for BC production through pretreatment and hydrolysis. It is well known that detoxification of lignocellul...
متن کاملA microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid
Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin ...
متن کاملExtraction of Ferulic Acid from Agro-industrial Wastes and Evaluation of Bioconversion of Ferulic Acid to Vanillin by Streptomyces Setonii
Several agro-industrial wastes (as chestnut and pistachio shells, grass, leaf fruit, vine leaf, and, red and white grape stems) were evaluated to ferulic acid extraction. The chemical analysis of these raw materials shows a high content of xylan in pistachio shells (33%), following the biorefinery concept, this fraction can be used in xylitol manufacture. The lignocellulosic materials were subm...
متن کاملEffect of phenolic acids on glucose and organic acid metabolism by lactic acid bacteria from wine.
The influence of phenolic (p-coumaric, caffeic, ferulic, gallic and protocatechuic) acids on glucose and organic acid metabolism by two strains of wine lactic acid bacteria (Oenococcus oeni VF and Lactobacillus hilgardii 5) was investigated. Cultures were grown in modified MRS medium supplemented with different phenolic acids. Cellular growth was monitored and metabolite concentrations were det...
متن کاملPhenolic acids in wheat coleoptile cell walls.
The phenolic constituent of nonvascular cell walls of wheat (Triticum aestivum L.) coleoptiles, which yields vanillin upon nitrobenzene oxidation, is not lignin as I previously claimed. It seems to be mainly ferulic acid bonded to carbohydrate, probably by an ester linkage. The acid is associated with a fraction of the wall rich in arabinose and xylose, although it is not known whether it is es...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013